在环境保护领域,液体闪烁谱仪为评估环境污染状况和制定环保措施提供了重要数据支持。通过测量环境样品中的放射性同位素,可以及时发现并处理潜在的放射性污染。在考古学中,14C测年技术已成为研究古人类历史和文化的重要手段之一。液体闪烁谱仪通过精确测量样品中的14C含量,为考古学家提供了确定文物年代的科学依据。在食品科学领域,液体闪烁谱仪用于检测食...
查看详细 >>液体闪烁谱仪是一种利用液体闪烁计数器原理,通过测量样品中放射性核素(如3H、14C等)发出的β粒子来进行分析的核仪器。它主要由探测器、电子学测量与控制单元以及闪烁液组成。当β粒子通过闪烁液时,会激发溶剂分子产生荧光,这些荧光被光电倍增管捕捉并转化为电信号,从而实现对放射性核素的测量。液体闪烁谱仪采用了先进的3管符合探测技术和TDCR淬灭校...
查看详细 >>除了在环境科学中的应用外,液体闪烁谱仪还较广用于核电站和核能设施的放射性监测、食品科学中的放射性污染检测以及水文地质研究中的放射性示踪。在考古断代领域,14C测年技术已成为研究古人类历史和文化的重要手段,而液体闪烁谱仪正是实现这一技术的关键设备。液体闪烁谱仪在测量特定放射性同位素时表现出极高的效率。例如,对于3H的测量效率可超过60%,对...
查看详细 >>液体闪烁谱仪是一种在化学、环境科学、考古学、食品科学等多个领域较广应用的优良核仪器。液体闪烁谱仪主要由探测器、电子学测量与控制单元两部分组成。其重要在于探测器部分,它通过利用闪烁液中的荧光体将β粒子的辐射能转化为光信号,再由光电倍增管将这些光信号转换为电信号进行测量。闪烁液通常由芳香溶剂和荧光体组成,以确保高探测效率。液体闪烁谱仪主要用于...
查看详细 >>在使用液体闪烁谱仪进行测量之前,需要对样品进行一系列前处理,如蒸馏、脱色、添加闪烁液等。这些步骤旨在去除样品中的杂质,提高测量的准确性。由于样品中的杂质可能会影响闪烁液的发光效率,导致测量结果出现偏差,因此需要进行淬灭校正。常用的淬灭校正方法包括内标准法、外标准法和脉冲高度法等。现代液体闪烁谱仪通常具备自动化操作功能,如自动预处理换样机构...
查看详细 >>液体闪烁谱仪采用了先进的3管符合探测技术和TDCR(三重-至-双重符合比率)淬灭校正技术,这些技术明显提高了测量的准确性和稳定性。其效率(标准源)对于3H可达60%以上,对14C更是高达90%以上。液体闪烁谱仪较广应用于多个领域,包括核电站、核能设施、环境保护、教育、科研、水文地质、食品科学、考古断代以及远洋考察等。它特别适用于极低水平放...
查看详细 >>氚(3H)是液体闪烁谱仪测量的重要对象之一。氚具有低能β辐射特性,且易随水进入人体并危害机体健康。因此,对水中氚的准确测量具有重要意义。液体闪烁谱仪通过优化测量条件和校正方法,能够实现对水中极低浓度氚的高效、准确测量。在考古断代领域,14C测年技术已成为研究古人类历史和文化的重要手段之一。液体闪烁谱仪正是实现这一技术的关键设备。通过对生...
查看详细 >>在水文地质研究中,液体闪烁谱仪可用于放射性示踪剂的测量。通过向地下水系统中注入放射性示踪剂并监测其迁移情况,可以研究地下水的流动速度和方向,为水资源管理和保护提供重要信息。液体闪烁谱仪具有体积小、易移动的特点,既可以作为桌面式仪器使用,也可以放入拉杆箱携带到现场进行快速检测。此外,它还具有预置测量程序、快速启动测量、可连接电脑进行能谱分析...
查看详细 >>该仪器采用先进的3管符合探测技术和TDCR淬灭校正技术,确保了测量的准确性和稳定性。其体积小、易移动,可桌面式使用,也可放入拉杆箱携带至现场进行快速检测。液体闪烁谱仪具备高度自动化功能,如预置测量程序、自动预处理换样机构等。这些功能使得仪器能够自动完成样品及试剂添加、样品脱色与蒸馏、闪烁液添加与混匀等过程,无需人工干预,较大提高了工作效率...
查看详细 >>随着科技的不断进步和应用的不断深入,液体闪烁谱仪也在不断发展和完善。新一代的商业液体闪烁光谱仪已经具备了更低的背景噪音和更高的计算灵敏度,能够测定更低浓度的放射性核素。未来,随着技术的进一步突破和应用的不断拓展,液体闪烁谱仪将在更多领域发挥更大的作用。液体闪烁谱仪作为一种高效、稳定、便携且智能化的核仪器,在多个领域发挥着重要作用。它不仅为...
查看详细 >>除了在环境科学中的应用外,液体闪烁谱仪还较广用于核电站和核能设施的放射性监测、食品科学中的放射性污染检测以及水文地质研究中的放射性示踪。在考古断代领域,14C测年技术已成为研究古人类历史和文化的重要手段,而液体闪烁谱仪正是实现这一技术的关键设备。液体闪烁谱仪在测量特定放射性同位素时表现出极高的效率。例如,对于3H的测量效率可超过60%,对...
查看详细 >>液体闪烁谱仪主要由探测器、电子学测量与控制单元组成。在测量过程中,待测样品与闪烁液混合,当β粒子通过闪烁液时,其能量被溶剂分子吸收并转化为光子,这些光子随后被光阴极探测并转化为电信号。该仪器采用先进的3管符合探测技术和TDCR(三重-延迟符合)淬灭校正技术,确保了测量的准确性和稳定性。其高效的探测能力和低背景噪音使其成为低水平放射性测量的...
查看详细 >>