convert/exp - 将trig 函数转换为指数函数convert/ln - 将arctrig 转换为对数函数polar - 转换为极坐标形式convert/radians - 将度转换为弧度convert/sincos - 将trig 函数转换为sin, cos, sinh, coshconvert/tan - 将trig 函数转换为tanconvert/trig - 将指数函数转换为三角函数和双曲函数第3章 求值3.1 假设功能3.2 求值Eval - 对一个表达式求值eval - 求值evala - 在代数数(或者函数)域求值evalb - 按照一个布尔表达式求值evalc - 在复数域上符号求值evalf - 使用浮点算法求值evalhf - 用硬件浮点数算法对表达式求值在科学研究和工程技术中,科学计算软件已成为不可或缺的工具。浦东新区特色科学计算软件服务电话
psqrt, proot - 多项式的平方根和第n次根rem,quo - 多项式的余数/商7.3 操纵多项式convert/horner - 将一个多项式转换成Horner形式collect - 象幂次一样合并系数compoly - 确定一个多项式的可能合并的项数convert/polynom - 将级数转换成多项式形式convert/mathorner - 将多项式转换成Horner矩阵形式convert/ratpoly - 将级数转换成有理多项式sort - 将值的列表或者多项式排序sqrfree - 不含平方项的因数分解函数7.4 多项式运算discrim - 多项式的判别式fixdiv - 计算多项式的固定除数norm - 多项式的标准型普陀区挑选科学计算软件24小时服务选择适合自己需求的科学计算软件,可以提高工作效率和成果质量。
dsolve - 求解ODEs 方程组odetest - 从ODE 求解器中测试结果是显式或者隐式类型10.3 偏微分方程求解pdsolve - 寻找偏微分方程 (PDEs) 的解析解第11章 数值计算11.1 MAPLE 中的数值计算环境IEEE 标准和Maple数值计算数据类型特殊值环境变量11.2 算法标准算法复数算法含有0,无穷和未定义数的算法11.3 数据构造器254complex - 复数和复数构造器Float, … - 浮点数及其构造器Fraction - 分数及其的构造器integer - 整数和整数构造器11.4 MATLAB软件包简介11.5 “”区间类型表达式
CharacteristicPolynomial 构造矩阵的特征多项式CompanionMatrix 构造一个首一(或非首一)多项式或矩阵多项式的友矩阵(束)ConditionNumber 计算矩阵关于某范数的条件数ConstantMatrix 构造常数矩阵ConstantVector 构造常数向量Copy 构造矩阵或向量的一份复制CreatePermutation 将一个 NAG 主元向量转换为一个置换向量或矩阵CrossProduct 向量的叉积`&x` 向量的叉积DeleteRow 删除矩阵的行DeleteColumn删除矩阵的列Determinant 行列式Diagonal 返回从矩阵中得到的向量序列DiagonalMatrix 构造(分块)对角矩阵COMSOL Multiphysics:用于多物理场仿真,适合工程和科学研究。
GetResultShape 返回矩阵或向量运算的结果形状GivensRotationMatrix 构造 Givens 旋转的矩阵GramSchmidt 计算一个正交向量集HankelMatrix 构造一个 Hankel 矩阵HermiteForm 计算一个矩阵的 Hermite 正规型HessenbergForm 将一个方阵约化为上 Hessenberg 型HilbertMatrix 构造广义 Hilbert 矩阵HouseholderMatrix 构造 Householder 反射矩阵IdentityMatrix 构造一个单位矩阵IsDefinite 检验矩阵的正定性,负定性或不定性IsOrthogonal 检验矩阵是否正交IsUnitary 检验矩阵是否为酉矩阵IsSimilar 确定两个矩阵是否相似Mathematica:强大的计算软件,适用于符号计算、数值计算和可视化。静安区常见科学计算软件比较
支持实时更新汇率等数据;部分软件还支持语音输入和播报功能。浦东新区特色科学计算软件服务电话
SchurForm 将方阵约化为 Schur 型SingularValues 计算矩阵的奇异值SmithForm 将矩阵约化为 Smith 正规型StronglyConnectedBlocks 计算方阵的强连通块SubMatrix 构造矩阵的子矩阵SubVector 构造向量的子向量SylvesterMatrix 构造两个多项式的 Sylvester 矩阵ToeplitzMatrix 构造 Toeplitz 矩阵Trace 计算方阵的迹Transpose转置矩阵HermitianTranspose 共轭转置矩阵TridiagonalForm 将方阵约化为三对角型UnitVector 构造单位向量VandermondeMatrix 构造一个 Vandermonde 矩阵VectorAngle 计算两个向量的夹角浦东新区特色科学计算软件服务电话
甘茨软件科技(上海)有限公司是一家有着雄厚实力背景、信誉可靠、励精图治、展望未来、有梦想有目标,有组织有体系的公司,坚持于带领员工在未来的道路上大放光明,携手共画蓝图,在上海市等地区的数码、电脑行业中积累了大批忠诚的客户粉丝源,也收获了良好的用户口碑,为公司的发展奠定的良好的行业基础,也希望未来公司能成为*****,努力为行业领域的发展奉献出自己的一份力量,我们相信精益求精的工作态度和不断的完善创新理念以及自强不息,斗志昂扬的的企业精神将**甘茨软件供应和您一起携手步入辉煌,共创佳绩,一直以来,公司贯彻执行科学管理、创新发展、诚实守信的方针,员工精诚努力,协同奋取,以品质、服务来赢得市场,我们一直在路上!
将加工程序、要求和更换刀具的操作数码和文字码作为信息进行存贮,并按其发出的指令控制机床,按既定的要求进行加工的新式机床。世界***台数控机床(铣床)诞生(1951年)。数控机床的方案,是美国的帕森斯(全名约翰·帕森斯)在研制检查飞机螺旋桨叶剖面轮廓的板叶加工机时向美国空军提出的。在麻省理工学院的参加和协助下,终于在1949年取得了成功。1951年,他们正式制成了***台电子管数控机床样机,成功地解决了多品种小批量的复杂零件加工的自动化问题。以后,一方面数控原理从铣床扩展到铣镗床、钻床和车床,另一方面,则从电子管向晶体管、集成电路方向过渡。1958年,美国研制成能自动更换刀具,以进行多工...