不同车载传感器的比较,目前,激光雷达、毫米波雷达和摄像头是公认的自动驾驶的三大关键传感器技术。从技术上看,激光雷达与其他两者相比具备强大的空间三维分辨能力。中国汽车工程学会、国汽智联汽车研究院编写的《中国智能网联汽车产业发展报告(2019)》称,当前在人工智能的重要应用场景智能网联汽车的自动驾驶和辅助驾驶领域中,激光雷达是实现环境感知的主要传感器之一。报告认为,在用于道路信息检测的传感器中,激光雷达在探测距离、精确性等方面,相比毫米波雷达具有一定的优势。360°x59° 超广 FOV,Mid - 360 助力移动机器人感知复杂 3D 环境。云南激光雷达代理商

这里就来分享一下激光雷达在实际应用中的那些小细节~工作原理:激光雷达是基于时间飞行(TOF)工作原理;激光雷达发射激光脉冲,并测量此脉冲经被测目标表面反射后返回的时间,然后换算成距离数据发射光和接受光时间差为t,c为光速,则雷达与目标的距离为雷达通过一个反射镜对测距激光脉冲进行反射。当反射镜被电机带动旋转时,从而形成一个与旋转轴垂直的扫描平面。雷达定时发出脉冲光,同时电机带动发射镜旋转,这样就可以构成二维点云数据。江苏车载激光雷达厂商轻巧易隐藏布置,览沃 Mid - 360 兼顾机器人美观与功能。

线数,线数越高,表示单位时间内采样的点就越多,分辨率也就越高,目前无人驾驶车一般采用32线或64线的激光雷达。分辨率,分辨率和激光光束之间的夹角有关,夹角越小,分辨率越高。固态激光雷达的垂直分辨率和水平分辨率大概相当,约为0.1°,旋转式激光雷达的水平角分辨率为0.08°,垂直角分辨率约为0.4°。探测距离,激光雷达的较大测量距离。在自动驾驶领域应用的激光雷达的测距范围普遍在100~200m左右。测量精度,激光雷达的数据手册中的测量精度(Accuracy)常表示为,例如±2cm的形式。精度表示设备测量位置与实际位置偏差的范围。
目前,LiDAR已普遍应用于各个领域。在大气科学中,LiDAR被用于空气质量监测和污染物检测;在天文学领域,LiDAR技术可用于观察行星表面地貌特征以及太阳系内其他天体的形态结构;在工程建设方面,利用LiDAR技术可以快速获取地形数据、制作数字高程模型(DEM)以及生成精确的三维地图;而在汽车领域中,人们普遍认为LiDAR是一项关键的光学距离感知技术,在自动驾驶领域得到了普遍应用。几乎所有投入自动驾驶研发的厂商都将LiDAR视为一项关键技术,并且已经有一些低成本、小体积的LiDAR系统被应用于高级驾驶辅助系统(Advanced Driver Assistance Systems, ADAS)。激光雷达在考古发掘中用于绘制遗址的三维模型。

相比于半固态式和固态式激光雷达,机械旋转式激光雷达的优势在于可以对周围环境进行360°的水平视场扫描,而半固态式和固态式激光雷达往往较高只能做到120°的水平视场扫描,且在视场范围内测距能力的均匀性差于机械旋转式激光雷达。由于无人驾驶汽车运行环境复杂,需要对周围360°的环境具有同等的感知能力,而机械旋转式激光雷达兼具360°水平视场角和测距能力远的优势,目前主流无人驾驶项目纷纷采用了机械旋转式激光雷达作为主要的感知传感器。物流分拣依靠激光雷达引导机械臂,快速准确分拣货物。固态激光雷达设备
激光雷达的设计优化提高了其在复杂环境中的可靠性。云南激光雷达代理商
优劣势分析,优势:MEMS激光雷达因为摆脱了笨重的「旋转电机」和「扫描镜」等机械运动装置,去除了金属机械结构部件,同时配备的是毫米级的微振镜,这较大程度上减少了MEMS激光雷达的尺寸,与传统的光学扫描镜相比,在光学、机械性能和功耗方面表现更为突出。其次,得益于激光收发单元的数量的减少,同时MEMS振镜整体结构所使用的硅基材料还有降价空间,因此MEMS激光雷达的整体成本有望进一步降低。劣势:MEMS激光雷达的「微振镜」属于振动敏感性器件,同时硅基MEMS的悬臂梁结构非常脆弱,外界的振动或冲击极易直接致其断裂,车载环境很容易对其使用寿命和工作稳定性产生影响。云南激光雷达代理商