库仑滴定法,原理:样品消解后,过量的氧化剂用电解产生的二价铁为还原剂进行库仑滴定,并用电位法判别滴定终点,根据消耗的电量求出样品中的 COD 值。适用范围:适用于各种类型的水样。优点:操作简便、快速,自动化程度高,无需使用标准溶液滴定,可避免人为误差。缺点:仪器设备较复杂,成本较高,对水样的预处理要求较高,且测定结果受水样中其他可被氧化物质的干扰。测定范围较窄,精度相对较低,只能求得大体的 COD 范围,如需准确测量,还需采用其他标准方法。超纯水的黏度特性与普通水相比有所变化。江西超纯水涂料
电子行业 在半导体制造领域,超纯水的应用极为关键。芯片制造过程中,从硅片的清洗、光刻、蚀刻到离子注入等各个工序,都需要超纯水。例如,在硅片清洗过程中,超纯水可以有效去除硅片表面的颗粒、有机物和金属离子等杂质。因为芯片的线宽非常小,微小的杂质颗粒都可能导致芯片短路或出现性能问题。在光刻工艺中,超纯水用于冲洗光刻胶,确保光刻图案的准确性。其高纯度能够避免水中杂质对光刻胶的溶解特性产生影响,从而保障芯片的高精度制造。 对于电子元器件的生产,如电路板的制作,超纯水也不可或缺。它用于清洗电路板,去除焊接过程中产生的助焊剂残留物、金属屑等杂质。这些杂质如果残留在电路板上,可能会引起电路的腐蚀或短路,影响电子产品的可靠性和使用寿命。广东教学用超纯水费用微滤在超纯水预处理中去除较大颗粒杂质。
总有机碳(TOC)的检测方法,高温燃烧法,原理:将水样中的有机物质在高温(通常为 900℃-1200℃)下完全氧化为二氧化碳,然后利用非色散红外检测器(NDIR)对二氧化碳进行定量检测,从而计算出总有机碳的含量。适用范围:适用于海水、江河、工业废水等污染较重的水体以及 TOC 浓度较高或含有高水平颗粒物的水样。优点:氧化彻底,测量精度高,可检测到 ppb 级的 TOC,适用于各种类型的有机物氧化。缺点:仪器设备昂贵,运行成本高,对样品的前处理要求较高,需要去除悬浮物和金属氧化物等干扰物质。
高锰酸钾法,原理:在酸性或碱性条件下,以高锰酸钾为氧化剂,将水样中的有机物氧化,剩余的高锰酸钾用草酸钠溶液还原,再用高锰酸钾溶液回滴过量的草酸钠,通过计算求出高锰酸盐指数,即 CODMn。 适用范围:适用于污染物相对较低的河流水和地表水。优点:实验过程中产生的污染比重铬酸钾法小。缺点:氧化性较低,氧化不彻底,测得的高锰酸盐指数比重铬酸盐指数低,通常与国标法测定结果相差 3-8 倍,且试验中需要回滴过量草酸钠,耗时长。超纯水在化工合成中,保障反应体系纯净无干扰。
能耗成本:反渗透过程需要在一定压力下进行,通常需要压力泵提供 1 - 10MPa 的压力,这会消耗大量的电能。在处理大量超纯水时,能耗成本尤其重要。不过,随着技术的进步,一些能量回收装置可以回收部分能量,降低能耗成本。例如,在一些大型海水淡化厂(其原理与反渗透处理超纯水类似),能耗成本占总运行成本的比例较高,但通过能量回收装置可使这一比例有所降低。膜更换成本:随着使用时间的延长,反渗透膜会受到污染、结垢或老化,导致性能下降。一般情况下,反渗透膜需要定期更换,其更换周期根据进水水质、操作条件和膜的质量等因素而异,可能在 1 - 3 年左右。膜的更换成本较高,而且还需要考虑更换过程中的人工成本和停机损失。化学药剂成本:在预处理过程中,可能需要使用化学药剂,如絮凝剂用于沉淀悬浮物、活性炭用于吸附有机物等。在膜清洗过程中,也需要使用化学清洗剂,如酸、碱、表面活性剂等来去除膜表面的污垢。这些化学药剂的使用增加了运行成本,并且需要合理储存和管理,以确保安全和有效使用。超纯水的水质稳定性对长期实验结果影响重大。江西超纯水涂料
超纯水在乐器制造中用于特殊工艺处理与保养。江西超纯水涂料
例如在电子工业的半导体制造领域,特别是高精度芯片制造过程中,通常要求超纯水的电阻率接近或达到 18.2 MΩ・cm。这是因为芯片制造工艺对水中离子杂质极为敏感,即使微量的离子存在也可能导致芯片性能下降或出现故障。而在一些对水质要求稍低的行业,如一般的化学分析实验室,超纯水电阻率达到 10 - 18 MΩ・cm 左右也可能满足基本的实验需求。对于超纯水的微生物含量,通常要求每毫升水中的细菌菌落数(CFU/mL)低于 10 甚至更低。在一些对微生物极其敏感的领域,如制药行业的注射剂生产和生命科学研究中的细胞培养实验,超纯水的微生物标准要求更加严格,要求达到无菌状态,即每毫升水中的细菌菌落数几乎为零。江西超纯水涂料